Christopher Burge Laboratory
 
 

Burge Lab Software

A repository of bioinformatics software and databases developed in the Chris Burge lab at MIT

All software produced by our lab is available (by download or by request from the author) free of charge by academic and other non-profit researchers. For those who prefer not to install the software on their own computer, most software is also available through web servers.

Commercial use of the Genscan and GenomeScan gene identification programs requires a license from Stanford University. For information about how to obtain a license, please contact Imelda Oropeza (imelda.oropeza at stanford dot edu).

This site is under development, so please check back regularly for updates.

Software

Version

Description Author(s) Reference(s) Web Server(s) How to Obtain Source Code/Binaries/Data Files
TargetRank
1.0
Algorithm for ranking conserved and non-conserved microRNA targets and siRNA off-targets. Cydney Nielsen, Chris Burge

Nielsen, C.B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J. and Burge, C.G. (2007). Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894-1910.

MIT TargetRank Server Contact Cydney Nielsen (cydney at mit dot edu)
ACEScan
1.0
Algorithm for prediction of conserved alternatively spliced exons from pairs of conserved mouse/human exons Gene Yeo, Chris Burge

Yeo, G., Van Nostrand, E., Holste, D., Poggio, T. and Burge, C. B. (2005). Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl. Acad. Sci. USA 102, 2850-2855.

MIT ACEScan Server Contact Gene Yeo (geneyeo at salk dot edu)

DiCodonShuffle, CodonShuffle, DiShuffle

1.0
Algorithms for generating random control mRNAs that preserve dinucleotide content and/or synonymous codon usage of a native mRNA sequence Luba Katz, Chris Burge Katz, L. and Burge, C. B. (2003). Widespread selection for local RNA structure in coding regions of bacterial genes. Genome Res. 13, 2042-2051. Not suitable for access by web server

Anonymous ftp to hollywood.mit.edu

cd pub

get mrnashuffle.tar.gz

(gzipped tar file - read README file for further instructions)

ExonScan
1.0
Algorithm for simulating the RNA splicing pattern of a primary transcript sequence

Michael Rolish, Chris Burge

Wang, Z., Rolish, M. E., Yeo, G., Tung, V., Mawson, M. and Burge, C. B. (2004). Systematic identification and analysis of exonic splicing silencers. Cell 119, 831-845. MIT ExonScan Web Server Contact Chris Burge (cburge at mit dot edu)
GENSCAN
1.0
Algorithm for ab initio prediction of complete gene structures in vertebrate, Drosophila and plant genomic sequences Chris Burge Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78 - 94. MIT GENSCAN server License/Download Instructions
GenomeScan
1.0
Algorithm for prediction of complete gene structures in vertebrate genomic sequences integrating primary sequence and protein sequence similarity information Ru-Fang Yeh, Chris Burge Yeh, R.-F., Lim, L. P. and Burge, C. B. (2001). Computational inference of homologous gene structures in the human genome. Genome Res. 11, 803-816. MIT GenomeScan Server Contact Chris Burge (cburge at mit dot edu)
Hollywood
1.0
Comparative genomic relational database of mammalian alternative splicing Dirk Holste, George Huo, Vivian Tung, Chris Burge Holste, D., Huo, G., Tung, V. and Burge, C. B. (2006). HOLLYWOOD: a comparative relational database of alternative splicing. Nucl. Acids Res. 34, D56-62. MIT Hollywood Server

Anonymous ftp to hollywood.mit.edu

cd pub/hollywood.freeze.20060101

get and read the README file for further instructions

IntronScan
1.0
Algorithm for simulating splicing of short introns in various organisms

Lee Lim,
Chris Burge

Lim, L. P. and Burge, C. B. (2001). A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98, 11193 11198. Not currently available through web server

Anonymous ftp to hollywood.mit.edu

cd pub

get intronscan.tar.gz

(gzipped tar file - read README file for further instructions)

MaxEnt
1.0
Algorithms for derivation and scoring of constrained-marginal maximum entropy distributions, with applications to 5' and 3' splice sites Gene Yeo, Chris Burge Yeo, G. and Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comp. Biol. 11, 377-394.

MIT MaxEnt Build Server

MIT MaxEnt Splice Site Scoring Server

Contact Gene Yeo (geneyeo at salk dot edu)

MiRScan
1.0
Algorithm for predicting microRNA genes from pairs of conserved sequences with potential to form RNA foldbacks

Lee Lim,
Chris Burge,
David Bartel

Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. and Bartel, D. P. (2003). Vertebrate microRNA genes. Science 299, 1540.

Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W., Burge, C. B. and Bartel, D. P. (2003). The microRNAs of Caenorhabditis elegans. Genes & Dev. 17, 977-990.

MIT MiRScan Server

Anonymous ftp to hollywood.mit.edu

cd pub

get miRscan.tar.gz

(gzipped tar file - read README file for further instructions)

Pictogram
1.0
Tool for displaying a sequence motif based on a set of aligned DNA or RNA sequences. Chris Burge Burge, C. B., Tuschl, T. H. and Sharp, P. A. (1999). Splicing of precursors to mRNAs by the spliceosomes. In Gesteland, R. F., Cech, T. and Atkins, J. F., eds. The RNA World, 2nd Ed., Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 525-560. MIT Pictogram Server

Anonymous ftp to hollywood.mit.edu

cd pub

get pictogram.tar.gz

(gzipped tar file - read README file for further instructions)

TargetScan(S)

1.0
Algorithm for prediction of microRNA targets based on mRNA sequence conservation in multiple species

Ben Lewis, Chris Burge, David Bartel

Lewis, B. P., Shih, I-h., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. (TargetScan)

Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. (TargetScanS)

targetscan.org

Contact Ben Lewis (benlewis at mit dot edu) or

wibr-bioinformatics at wi dot mit dot edu

Feedback: Please send comments or questions about this site to Chris Burge (cburge at mit dot edu)